

Subject: Science

Curriculum Principles

By Year 11, a student of science at Dixons Newall Green will:

- Know fundamental scientific principles from biology, chemistry and physics that will provide a foundation for understanding and navigating the world. Student knowledge is structured around the big ideas in science which range from the particulate nature of matter to the evolution of the atmosphere to the structure of the Universe.
- Understand the processes of scientific inquiry that leads to the creation and development of concepts and theories. Students will understand how science can be used to explain observations and make predictions about natural phenomena.

Our uniting 'sentence' is "The science department empowered students to achieve mastery in science and explore the wider world, by promoting curiosity and inspiring them to think beyond the known"

In order to achieve a true understanding of science, topics have been intelligently sequenced based on the following rationale:

- Scientific knowledge is broadly hierarchical in nature pupils must have a secure understanding of each key block of knowledge before progressing onto the next stage. Therefore, in order to support this, topics have been meticulously planned and ordered to ensure that students are always building on and deepening their previous learning.
- In Biology, KS3 students learn about the structure, function and behaviour of living organisms; building up from the microscopic cellular level to the macro-scale interactions in an ecosystem. These topics are all revisited and extended at KS4, with the expectation that students learn to apply this knowledge and make developed links between topics.
- In Chemistry, students start with a rigorous grounding in the fundamentals of chemistry at KS3: states of matter, elements, compounds and mixtures, the periodic table, chemical reactions and the behaviour of different materials. Having mastered the foundation knowledge, students are fulling equipped with the necessary knowledge and skills to tackle the more challenging KS4 content, such as chemical bonding and quantitative chemistry.
- In Physics, students are introduced at KS3 to the fundamentals of forces, energy, waves and electricity, focusing mainly on a qualitative understanding of these topics. At KS4 the focus shifts to a more quantitative appreciation of the subject matter, which allows students to apply skills that have already been introduced in their Mathematics lessons.
- 'Working Scientifically' skills are taught explicitly as an introductory topic at the start of year 7. These skills have then been carefully mapped across all topics throughout KS3 and KS4 so that pupils are given many opportunities to apply and develop these concepts. For example, each topic deliberately includes several opportunities to revisit graph and table interpretation skills, so that students are able to fully master these concepts.

The science curriculum will address social disadvantage by addressing gaps in students' knowledge and skills:

- By being designed around the most disadvantaged learner in our community. We are careful not to assume any prior general knowledge or cultural capital – instead we aim to democratise knowledge through explicit teaching, so that all students can lay claim to a rich intellectual inheritance.
- By teaching all students the same rigorous curriculum. Although students are taught in sets, we have the same high expectations of all students we do not narrow or dilute the curriculum for a lower set. All students are taught from the same student work booklets so that everyone is given access to the same powerful and catalytic knowledge. That being said, teachers understand the need to supplement the work booklets with additional practice/scaffolds or extension material, as required for individual students.
- By providing extra support to students with special educational needs through the use of double staffing, and also ensuring these students are prioritised when teachers create and implement their intervention prevention plans.

We fully believe science can contribute to the personal development of students at Dixons Newall Green:

- The social development of our pupils is nurtured through the explicit teaching and practice of effective teamwork and communication skills when working in small groups for scientific investigations. Student groups are always selected by the teacher to ensure that students learn to effectively collaborate with others who may be from different backgrounds or from outside of their friendship circle
- Science naturally provides many opportunities for balanced discussions of moral and ethical issues. For example, we explore the moral complexities of organ transplant, the controversial use of genetic engineering and the disputed use of stem cells for disease treatment. Students are given time to discuss these issues both in pairs and as a class to allow pupils to develop spiritually. This allows pupils to form and articulate informed opinions, whilst also carefully and respectfully listening to others viewpoints.
- When teaching topics such as the theory of evolution and the Big Bang theory, this provides a chance to develop students' cultural awareness as we can discuss viewpoints of these theories from different religions and cultures. We also discuss historical sexism in scientific developments for example, the famous case of Rosalind Franklin's discovery of the structure of DNA.

- Science lessons also provide a wealth of opportunities to explore personal development relating to physical and mental health. For example, students study the effects of smoking, drugs and alcohol from both a scientific and social perspective. When teaching about the digestive system, students are taught about the importance of a balanced diet and how to interpret nutritional information on food labels.
- We want students to become respectful and responsible citizens who contribute positively to society. For example, students are taught in detail about global warming, pollution and energy resources so that they understand the importance of recycling, reducing waste and cutting down their carbon footprint.

At KS3 and KS4, our belief is that homework should be interleaved-revision of powerful knowledge that has been modelled and taught in lessons. This knowledge is recalled and applied through a range of low-stakes quizzing and practice.

Opportunities are built in to make links to the world of work to enhance the careers, advice and guidance that students are exposed to:

- Problem solving activities are built into the curriculum that allow students to apply scientific knowledge to certain career based scenarios. For example, when learning about health and disease, students have to write an explanation to a patient from the point of view of a doctor explaining why they are prescribing painkillers rather than antibiotics.
- Each topic at KS3 and KS4 provides the teacher moments to allow pupils to explore a profession linked to that particular unit of work. For example, when year 7 pupils study the Cell and Life Processes topic, they learn about careers in histology. Pupils will learn about the skills required and the responsibilities of the job.

A true love of science involves learning about various cultural domains. We teach beyond the specification requirements, but do ensure students are well prepared to be successful in GCSE examinations:

- Although students' practical skills are no longer examined through coursework, we believe it is absolutely essential that all students can plan and carry out practicals using laboratory equipment safely and accurately so that they are fully prepared for future study and employment. At KS4 there is a greater focus on the GCSE Required Practicals. However, at KS3 we want pupils to be exposed to a wider variety of engaging practicals, such as investigations into the effectiveness of different brands of indigestion tablets and hand sanitiser, finding the best metal for making frying pans and working out the calorie content of crisps through combustion.
- Students that wish to develop their science knowledge beyond the curriculum can select CREST award for their co-curricular elective. Where students will get to experience life in a STEM career whilst carrying out a project or investigation.

Curriculum Overview

All children are entitled to a curriculum and to the powerful knowledge that will open doors and maximise their life chances. Below is a high-level overview of the critical knowledge children will learn in this particular subject, at Key Stage 3 and 4, in order to equip students with the cultural capital they need to succeed in life. The curriculum is planned vertically and horizontally giving thought to the optimum knowledge sequence for building secure schema.

Dixons Newall Green Academy is part of the Dixons Academies Trust

		Knowledge, skills and understanding to be gained at each stage*								
		Cycle 1	Cycle 2	Cycle 3						
	Knowledge	Science skills builds on how science	Specialised cells and life processes,	Life processes linked to ecology,						
	& Skills	works skills previously taught through	forces causes an energy transfer, science	chemical reactions linked to						
	Revisited	investigations. Cells and life processes	skills applied to investigations.	atmosphere, science skills applied to						
		builds on previous knowledge from		investigations.						
		the Animals (including Humans)								
	Knowladaa	topics.	Lingth and disease	Inharitanaa and variation						
	Introduced	Skeletal system: muscular system:	Pathogens: immune system: discovery	DNA and genetics: environmental and						
	introduced	food groups: digestive system:	and use of antibiotics: discovery and use	inherited variation: natural selection						
ansion		respiratory system: circulatory	of vaccinations: healthy diets: smoking:	and						
		system; the heart and exercise	drugs and alcohol	extinction						
		Metals	Chemical reactions	Plants						
		Properties of metals; reactions of	Chemical equations; rates of reaction	Photosynthesis; structure of leaves;						
		metals and reactivity series; extraction	theory and investigations; conservation	plant roots and minerals; fertilisers;						
		of metals from ores and recycling	of mass and exo/endothermic reactions	bioaccumulation and testing leaves for						
dxa		metals	Circuit components and diagrams: series	starch Wayes						
8 2 9 pu		Weight mass and gravity: Hooke's	and parallel circuit theory and	Behaviour of light waves: reflection						
EAF		Law theory and investigation: speed	investigation: current, voltage and	refraction and dispersion investigations:						
YE		calculations and distance-time graphs	resistance; magnets; magnetic fields and	colours of light; seeing and the eye.						
udo		. .	electromagnets	Behaviour of sound waves; amplitude						
vel				and frequency; oscilloscope traces;						
De				hearing and the ear.						
	CEAIG	Careers in medicine / nursing (the	Careers in chemical engineering	Careers in ophthalmology (light topic)						
		body topic)	(chemical reactions topic)							
	Knowledge	Cells and life processes, metal and	Specialised cell knowledge is developed.	Cell structure, photosynthesis, ecology,						
	& Skills	non- metal properties, year 7 forces	year 7 simple chemical reactions	chemical reactions, from year 7,						
	Revisited	knowledge is further developed,	knowledge is further developed, science	science skills applied to investigations.						
		science skills applied to investigations.	skills applied to investigations.							
	Knowledge	AQA GCSE Combined Science Trilogy	AQA GCSE Combined Science Trilogy	AQA GCSE Combined Science Trilogy						
	Introduced	Cell biology	Organisation	Infection and response						
		Structure of eukaryotic and	Organ systems in plants and animals	Pathogens; spread and prevention of						
		advantages and disadvantages of stem	Ionic: covalent and metallic bonding:	treatment of infectious diseases						
		cells: microscopy and cell transport	solids: liquids and gases and properties	Chemistry of the atmosphere						
		(diffusion; active transport and	of substances	Composition and evolution of the						
		osmosis).	Particle model of matter	Earth's atmosphere; greenhouse gases						
		Atomic structure and periodic table	States of matter; changes of state;	and pollutants						
		Development and current model of	density; internal energy; energy							
ion		the atom; group 1; 7 and 0 elements;	transfers and gas pressure							
R 9 idat		Energy								
/EA soli		Stores and pathways: law of								
Con		conservation; efficiency; power;								
-		energy resources								
	CEAIG	Careers in microbiology (cell biology	Careers in plant science and horticulture	Careers in pharmacology (infection and						
		topic)	(organisation topic)	response topic)						
	Knowledge	Builds on year 7 and 8 knowledge of	Builds on year 7 and 8 knowledge of	Builds on year 7 and 8 knowledge of						
	& Skills	cells and life processes energy	hody systems and life processes	infectious diseases the Earth's						
	Revisited	periodic table, elements, compounds,	properties of matter and states of	atmosphere and burning fossil fuels.						
		mixtures, chemical equations and	matter. Science skills continue to be	Science skills continue to be						
		separation techniques. Science skills	embedded.	embedded.						
		continue to be embedded.								
	Exam Spec	AQA GCSE Combined Science Trilogy	AQA GCSE Combined Science Trilogy	AQA GCSE Combined Science Trilogy						
		Bioenergetics	Homeostasis and response	Inheritance; variation and evolution						
		Respiration and photosynthesis	Regulation of internal conditions;	Reproduction; melosis; genetics;						
tery		Chemical measurement: conservation	hermones and fertility	classification						
EAR 10 ated mast		of mass: chemical calculations and	Energy changes in reactions	Organic chemistry						
		concentration	Exothermic and endothermic reactions	Crude oil; hydrocarbons; fractional						
		Chemical changes	Rate and extent of chemical change	distillation and cracking						
YE		Reactivity of metals and acids; pH and	Rate of reaction; catalysts; reversible	Chemical analysis						
jhq		electrolysis	reactions and dynamic equilibrium	Purity; formulations; chromatography						
So		Electricity	Forces	and gas tests						
		Circuit components; current; potential	Scalars and vectors; types of forces;	Waves						
		unterence, resistance, i-v graphs;	law: Newton's laws: speed: acceleration:							

Dixons Newall Green Academy is part of the Dixons Academies Trust Registered Office: Dixons City Academy, Ripley Street, Bradford, West Yorkshire, BD5 7RR. Registered in England No. 2303464

		Knowledge, skills and understanding to be gained at each stage*								
		Cycle 1	Cycle 2	Cycle 3						
		mains electricity and national grid Atomic structure Model of an atom; radioactive decay and nuclear radiation	motion graphs; stopping distances and momentum	Transverse and longitudinal waves; properties of waves; uses and applications of electromagnetic waves						
	CEAIG	Careers in electrical engineering (electricity topic)	Careers in mechanical engineering (forces topic)	Careers in forensic science (chemical analysis topic)						
	Knowledge & Skills Revisited	Builds on knowledge of life processes, chemical reactions, atomic structure from the chemistry topic and electricity. Science skills continue to be embedded.	Builds on previous knowledge of reproduction, chemical reactions and simple force and motion knowledge. Science skills continue to be embedded.	Builds on previous knowledge of genetics, separating techniques and waves.						
YEAR 11 Nuanced manipulation	Exam Spec	AQA GCSE Combined Science Trilogy Ecology Adaptation; interdependence; competition; biodiversity and human effects Using Resources Potable water; life cycle assessments and recycling Magnetism and electromagnetism Permanent and induced magnetism; magnetic fields; motor effect	AQA GCSE Combined Science Trilogy Review and revision of all GCSE topics							
	CEAIG	Careers in manufacturing engineering (using resources topic)								
	Knowledge & Skills Revisited	Builds on previous knowledge of ecology, metal recycling, magnets and magnetic fields.	Revisit all topics							

*A powerful, knowledge-rich curriculum teaches both **substantive knowledge** (facts; knowing that something is the case; what we think about) and non-declarative or **procedural knowledge** (skills and processes; knowing how to do something; what we think with). There are no skills without bodies of knowledge to underpin them. In some subjects, a further distinction can be made between substantive knowledge (the domain specific knowledge accrued e.g. knowledge of the past) and disciplinary knowledge (how the knowledge is accrued e.g. historical reasoning).

Please refer to the DAT Curriculum Principles, published on our website, for further information about how we have designed our all-through curriculum.

Year 7 Long Term Plan

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Cycle 1	04.09.2023	11.09.2023	18.09.2023	25.09.2023	02.10.2023	09.10.2023	16.10.2023	06.11.2023	13.11.2023	20.11.2023	27.11.2023	4.12.2023	11.12.2023
	Orientation	Science Skills	Science Skills	Science Skills	Cells & Life Processes	Cells & Life Processes	Cells & Life Processes	Particles & Solutions	Particles & Solutions	Particles & Solutions	Forces & Space	Forces & Space	Force & Space
	01.01.2024	08.01.2024	15.01.2024	22.01.2024	29.01.2024	05.02.2024	12.02.2024	26.02.2024	04.03.2024	11.03.2024	18.03.2024	25.03.2024	
	Energy	Energy	Energy	Reproduction	Reproduction	Reproduction	Revision	Mid-year Assessment	Atoms & Elements	Atoms & Elements	Atoms & Elements	Atoms & Elements	
Cycle 2													
	15.04.2024	22.04.2024	29.04.2024	06.05.2024	13.05.2024	03.06.2024	10.06.2024	17.06.2024	24.06.2024	01.07.2024	08.07.2024	15.07.2024	22.07.2024
Cycle 3	Ecology	Ecology	Ecology	Acids & Alkalis	Acids & Alkalis	Acids & Alkalis	Acids & Alkalis	Revision	Revision	Earth, Materials & Atmosphere	Earth, Materials & Atmosphere	Earth, Materials & Atmosphere	Earth, Materials & Atmosphere